EXHIBIT 064 NSARB-2023-001-AFF-005
RECEIVED February 20, 2024

NOVA SCOTIA AQUACULTURE REVIEW BOARD

IN THE MATTER OF: Fisheries and Coastal Resources Act, SNS 1996, c 25
-and -
IN THE MATTER OF:; An Application by KELLY COVE SALMON LTD. for a boundary

amendment and two new finfish aquaculture licenses and leases
for the cultivation of Atlantic salmon (Salmon salar) — AQ#1205x,
AQ#1432, AQ#1433, in Liverpool Bay, Queens County (the
“Application”)

Rebuttal Affidavit of Adam Turner affirmed on February 16, 2024

| affirm and give evidence as follows:

1. I am Adam Turner, PEng of Saint John New Brunswick. | am a professional engineer
licensed to practice in New Brunswick, Nova Scotia and Newfoundland and Labrador and

employed by Cooke Aquaculture Inc.

2. I have personal knowledge of the evidence affirmed in this affidavit except where

otherwise stated to be based on information and belief.

3. | state, in this affidavit, the source of any information that is not based on my own personal

knowledge, and | state my belief of the source.

4. My CV was previously filed in this proceeding and is located at Exhibit A of the Affidavit of
Adam Turner affirmed on January 16, 2024. | affirm that my CV is true and accurate.

5. | have received the report of Inka Milewski attached as Exhibit A to her affidavit affirmed
on January 15, 2024 and filed in this proceeding by the Group of 22 Fishermen (the
“Milewski Report”).

6. In the Milewsky Report, Ms. Milewski cites a peer-reviewed study titled “Mapping
American lobster (Homarus americanus) habitat for use in marine spatial planning” which
was authored by Anne McKee, Jon Grant and Jeffrey Barrell and published in the
Canadian Journal of Aquatic Sciences in 2021 (the “McKee et al. (2021) Study”).

7. The McKee et al. (2021) Study is attached as Exhibit A to this affidavit.
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I am informed through my review of the McKee et al. (2021) Study and do verily believe
that the authors of the McKee et al. (2021) Study used aerial drone footage to collect
lobster trap presence data through the georeferenced photography of lobster trap buoys

which was conducted during two days within the fishing season in May 2017.

The authors’ method is described in the sub section titled “Trap Data” at page 709 of the
McKee et al (2021) Study. | am informed by this sub section and do verily believe that the
authors assembled a lobster trap presence dataset through a metadata analysis of a
collection 2089 photos followed by their visual inspection of a reduced set of 186 photos

for Lobster trap buoys.

10 The approximate location of the lobster trap presence dataset created by the McKee et al.

(2021) Study is depicted by the oval shape in the following image displayed at Figure 1:
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I was not involved with the McKee et al. (2021) Study and cannot speak as a fact witness
or as an expert to the study’s collection or use of lobster presence data in Liverpool Bay.
I understand and do verily believe from my review of the McKee et al. (2021) Study that
the lobster trap presence data was used as a proxy for lobster presence and used in
conjunction with species distribution models (“SDMs”) for the purposes of assessing
methods for marine spatial planning. | am an engineer, not a marine scientist, and any
opinions expressed in the study on its use of the lobster presence data along with species
distributional modelling to assess methods of marine spatial planning are outside of my

expertise.

However, | have observed that at Figure 2 on page 6 of the Milewski Report, Ms. Milewski
overlays the proposed lease sites AQ#1205x, AQ#1432, AQ#1433 on Figure 10 of the
McKee et al. (2021) Study.

Figure 10 is one of two figures in the McKee et al. (2021) Study which depicts information
from an SDM (the colouring) along with the lobster trap presence data (the white
rectangles) on a map of Liverpool Bay. The other figure is Figure 11, which is also
reproduced at page 5 of the Milewski Report, but without the overlay of the proposed lease
site locations.

Since | am not an expert in Ms. Milewski's field, | cannot comment on the two different
SDMs from the McKee et al. (2021) Study or Ms. Milewski’s choice to overlay the proposed
lease sites on the “relative rate of lobster occurrence” SDM rather than the “probability of
lobster occurrence” SDM.

However, in light of Ms. Milewski’'s evidence, and the fact that lobster trap presence data
is displayed on other figures in the McKee et al. (2021) study in addition to Figure 10, |
understand that the Board and the parties may benefit from a high-resolution overlay of
the proposed lease site locations on the lobster trap presence data which was collected
during the McKee et al. (2021) Study.

As a mechanical engineer, | am qualified and capable of overlaying georeferenced
datapoints on a map. | have significant experience creating georeferenced maps of
aquaculture sites and other offshore structures. | am generally creating these types of
drawings weekly as part of my job. Therefore, overlaying some points from an existing

map image to another is a fairly trivial task that | have high confidence in.
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17. Accordingly, | have prepared a map which overlays the three proposed lease sites
AQ#1205x, AQ#1432, AQ#1433 on the lobster trap presence data. This map is attached
to this affidavit as Exhibit B.

18. This map was not based on the raw latitude and longitude trap location data. It is an
overlay of the image in the McKee et al. 2021 Study onto a new map drawing with the

lease and site locations. | affirm that this map is accurate to the best of my technical
abilities.

19. I make this affidavit in support of KCS's application and for no other purpose.

AFFIRMED before me in Saint John, New \
Brunswick, on February 16, 2024.

-

New ¢ Adam Turner
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KCS Application re AQ#1205X, AQ#1432,
AQ#1433 in Liverpool Bay, Queens County

This is Exhibit A referred to in the Affidavit
of Adam Turner, affirmed before me
on February 16, 2024.

New Brunswick Commissioner of Oaths
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Mapping American lobster (Homarus americanus) habitat for use
in marine spatial planning
Anne McKee, Jon Grant, and Jeffrey Barrell

Abstract: Marine spatial planning (MSP) is a management tool that could help mitigate the conflict that exists between the
American lobster (Homarus americanus) fishery and the net pen salmon aquaculture industry in the Canadian Maritime prov
inces. We developed adult American lobster species distribution models (SDMs) for use in MSP in Liverpool, Nova Scotia,
through remote sensing data collection methods. A single beam echo sounder was used to collect bathymetry and seafloor
substrate data, and an aerial drone collected lobster presence data through the georeferenced photography of lobster trap
buoys. The SDMs display trends in lobster presence likelihood that correspond with established patterns of habitat selec
tion in adult lobsters. The areas where lobsters are predicted to have the highest likelihood of presence are sections of hard
and rocky substrate, though that association is confounded by depth. The uncertainty of the SDMs was quantitatively
assessed and the importance of explicitly analysing the effects of scale and resolution of spatial data are highlighted.

Résumé : La planification spatiale marine (PSM) est un outil de gestion qui pourrait aider a atténuer le conflit actuel entre
le secteur de la péche au homard (Homarus americanus) et celui de la salmoniculture en parcs a filet dans les provinces mari
times canadiennes. Nous avons développé des modéles de répartition de I'espéce (MRE) pour les homards adultes a utiliser
pour la PSM a Liverpool (Nouvelle Ecosse), en faisant appel a des méthodes de collecte de données télémétriques. Un écho
sondeur a faisceau unique a été utilisé pour recueillir des données bathymétriques et sur le substrat marin et un drone aér
ien a recueilli des données sur la présence de homards par photographie géoréférencée de bouées de piéges a homards. Les
MRE révelent des tendances de probabilité de présence de homards qui correspondent a des motifs établis de sélection d’ha
bitats chez les homards adultes. Les zones ou les plus grandes probabilités de présence de homards sont prédites sont des
secteurs de substrat dur et rocheux, bien que la profondeur complique cette association. L'incertitude associée aux MRE est
évaluée de maniére quantitative et I'importance d’analyser explicitement les effets de I'échelle et de la résolution des don
nées spatiales est soulignée. [Traduit par la Rédaction]|

Introduction

Coastal marine waters in Atlantic Canada are used for a variety
of activities, including fishing, aquaculture, resource extraction,
transport, shipping, and recreation. The proximity and occa-
sional overlap of some activities in these coastal waters can lead
to conflict among users (Wiber et al. 2012; Marshall 2001; Ivany
et al. 2014). Marine spatial planning (MSP) is a planning frame-
work that is designed to manage such user-user conflicts through
structuring the spatial and temporal distribution of ocean-based
activities in an efficient manner that is sensitive to the needs of eco-
system, economic, and social objectives (Foley et al. 2010). However,
one of the major weaknesses with MSP is a chronic lack of geospa-
tial layers that detail the required data in suitable spatial and tem-
poral scales (St. Martin and Hall-Arber 2008; Holmes et al. 2008;
Crowder and Norse 2008; Harris and Stokesbury 2006). Specifically,
spatial habitat representations for species of note are important
components that are frequently missing from the MSP process.

Commerdial fisheries and net-pen finfish aquaculture frequently
share coastal space in Atlantic Canada. In Nova Scotia, the American
lobster (Homarus americanus) is the most valuable commercial catch,
with landings totalling to more than $802 million in 2017 (DFO 2017).
However, inshore lobster fishing grounds are often used as farming
sites for Atlantic salmon (Salmo salar). This overlap can cause conflict
in local fishing communities, particularly regarding concerns

about water pollution, lobster stock health, and trapping access
(Wiberet al. 2012; Marshall 2001; Ivany et al. 2014). MSP strategies
can be applied here through the delineation of local benthiclob-
ster habitat, thereby allowing the placement of aquaculture sites
in a manner that minimizes their overlap with lobster habitat.
Describing the lobster habitat can be accomplished through spe-
cies distribution models (SDMs). SDMs, which are also referred
to as habitat suitability models, are a common type of habitat
map that describe the suitability of an environment to supporta
species by representing where mapped environmental condi-
tions, such as substrate, match the niche conditions of the spe-
cies (Brown et al. 2011; Franklin 2010).

MSP is often conducted at regional scales to incorporate activ-
ities that also encompass those scales (e.g., shipping, offshore
fishing, marine protected areas). Fish farms are located at desig-
nated sites occupying much smaller areas of several square kilo-
metres. The extent of their spatial interactions with other activities
must also be examined at similar scales. In the case of Nova Scotia,
the Atlantic coastline is in many places divided into discrete bays
that also contain inshore lobster fisheries. MSP involving these activ-
ities is similarly defined by these bays. In the following study, we
examine the potential for acoustic discrimination of lobster habitat
as the basis for an SDM and its applicability to MSP involving fish
farms. The application of both SDM and MSP at small spatial scales
results in attention to some of the potential pitfalls of this approach.
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Fig. 1. Map of Liverpool Bay, with inset showing location within Nova Scotia. The hashed rectangle represents the location of the salmon
net pens, and the oval represents the approximate study location. Map creation information can be found in Materials and methods.
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Adult American lobsters consistently demonstrate preferential
selection for shelter-forming substrates in the benthic marine
environment. The most strongly preferred substrate is complex,
preformed shelter such as boulders and cobble (Tremblay et al.
2009; Selgrath et al. 2007; Bologna and Steneck 1993; Spanier
1994), but shelter can also be constructed as burrows in stable
mud (Spanier 1994; Lawton and Lavalli 1995; Cooper and Uzmann
1980) or shallow bowl-shaped depressions in sand (Cooper and
Uzmann 1980). If boulders are scarce, adult lobsters will typically
choose to live on mud instead of sand; if boulders and mud are
both scarce, they will live on sand (Cooper and Uzmann 1980;
Spanier 1994; Bologna and Steneck 1993). Adult lobsters have
been shown to move into artificial reefs that are introduced on
mud or sand barrens (Spanier 1994; Bologna and Steneck 1993).
However, detection and mapping of these potential habitat char-
acteristics can be difficult due to the water that covers the sea-
floor. A common approach to resolving this issue is through echo
sounding, which is a form of acoustic remote sensing that detects
the physical attributes of the seafloor substrate through high-
frequency sound pulses (Brown et al. 2011). Both multibeam (MBES)
and single-beam (SBES) echo sounder systems have been used
in tandem with acoustic ground discrimination systems (AGDS;
when used with SBES, SB-AGDS), which group the echo sounder
signals according to their characteristics. These systems are
commonly used to map shelf and coastal seafloor substrate dis-
tributions and have been used for the purpose of providing envi-
ronmental layers to SDMs for decades (Brown et al. 2011; Freitas
etal. 2011).

It is this approach that we used in the following study to model
habitat for H. americanus in a small bay in Atlantic Canada where

salmon aquaculture and the lobster fishery currently coexist and
where aquaculture expansion is under consideration by provincial
regulators. By developing continuous data maps of seafloor sub-
strate and bathymetry, then adding points of lobster presence —
represented by proxy with lobster trap buoys — we created hab-
itat suitability models with the intent of lessening spatial overlap
between the lobster fishery and aquaculture. These models can
be applied to the MSP process, adding the missing habitat layers
for this important commercial species and allowing for more effec-
tive distribution of coastal space through spatial management.

Materials and methods

Study site

Liverpool Bay is on the southwestern shore of Nova Scotia,
Canada, on the Atlantic coast (44°2'N, 64°40'W) (Fig. 1; all maps
in this study were created in ArcMap 10.5 with Nova Scotia shore-
lines from GeoNova (2015) and additional shorelines from Natural
Resources Canada (2010)). A narrow bay at 4.5 km long and 2.6 km
wide at the maximum, it is the exit point of the Mersey River,
which extends trumpet-like into the ocean to form the bay. The
tidal range of the bay is ~1-2 m. Coffin Island, a small island of
~0.75 km? that is located 1.5 km northeast of the mouth of the
bay, provides some shelter to the salmon aquaculture pens
tucked between the island and the mainland. The town of Liver-
poolis at the head of the bay and the village of Brooklyn is on the
north shore; the bulk of the activity on the bay is from commer-
cial fishing. The research was focused in the eastern half of the
bay, partially due to the location of the fish farm and partially
due to the placement of lobster traps.
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Fig. 2. The acoustic data survey, with track spacing resolutions of 100 m (A) and 50 m (B). Map creation information can be found in

Materials and methods.
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Data collection

Acou ticdata
Single-beam acou ic data were collected u ing a vertically ori-
ented 204 8 kHz 8 6° beam angle tran ducer and a BioSonics Inc.
MX aqua ic habi at echo sounder. This ystemi designed pecifi-
cally to detect, cla ify, and map sub trate in coastal areas. The
local fi hing boat on which the echo ounder y tem was mounted
was kept to a speed of 5 knots (2.6 m-s ') to minimize turbulence
around the tran ducer and interference wi h lagging pings and to
main ain consistent patial coverage in the along-transect direc-
tion. The ra e of acou tic ping produc ion wa 5 H , re ul ing in a
equential distance b tween pings of ~0 5 m, which were georefer-
enced wi h Differen ial Global Positioning System witha po i ional
accuracy of ~2 m. The data were collected over the course of 2 con-
secutive days in mid-November of 2016. Day 1 included roughly
parallel east-we t ransec s separa ed by ~100 m (range 80-120 m;

Fig 2A). Day 2 con i ted of parallel track po itioned midway
b tweenDay 1 ransec s, re ul ing in data coverage at ~50 m tran-

ect spacing (Fig 2B). Track separation dis ances were cho enba ed
on he size of he urvey areas and practicali ies of comple ion within
a single day The area covered amoun ed to ~63 km? and 196 817
da apoints (pings; covering ~154 km? were collec ed in total.

Ground-truth video data

Ground-truthing data for seafloor substrate were collected via
a drop video camera (Seavi wer 950 Series, colour ver ion) and
were later used in verification of the acoustic data. The videos
were a igned to broad substra e categories, a described in the
Sub tra e categories ection below, according to what ubstra e
was vi ible in the footage. Videos were taken bo h on top of and
between the acou ic transects, for a to al of132 videos, each cov-
ering ~2-3 m? of seafloor and assigned according to the coarse t
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Fig. 3. A flow chart depicting the method of creating the substrate maps.
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ubs rate category vi ible, and were georeferenced wi h a GPS
wi h apo iional accuracy of ~2-3 m. The fir t set of videos were
taken during theacous ic sampling, haphazardly and when logi -

ically convenient, and then a second effort to collect videos wa
made wi hout the re traint of acous ic sampling to fill in spatial
gap wi hinthe urveyed area.

Trap data
The lob ter fi hery in Liverpool Bay is part of Lob ter Fishing
Area (LFA) 33, where the fi hing eason is open from the end of

November to the end of May The loca ion of the lob ter trap
buoys were used a a urrogate for the pre ence of lob ter based
on fishers’ experience in knowing where to deploy. Individual
trap ortrap tring aremarked bydi tinctive floats and no o her

imilar buoys are pre entin the bay The trap location data were
collected u inga DJI Phantom 4 aerial drone during 2 days wi hin
the fi hing eason in May of 2017, flown wi hin the area covered
by the acoustic data collection. The drone took 12.4 megapixel
photo atara e of 02Hzat an al itude of 90 m (2089 pho os) This
created an overlap between the photo to en ure complete cover-
age The drone was configured to always face north (gimbal yaw
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of 0°), such that the top of the resulting photographs would also
correspond with north. The camera was configured to face
straight down (gimbal pitch of 90°) to reduce unnecessary com-
plexity in later analysis.

Data analysis and substrate map creation

Acoustic data

We created two substrate distribution maps to compare the
effects of spatial data resolution on the display and interpreta-
tion of the data (Fig. 3). The acoustic data for these maps were
selected from a larger pool of various spatially resolved datasets
through a rigorous structured analysis that highlighted and com-
pared the uncertainties associated with each dataset. The two
datasets that had the least uncertainty were those where the data
were collected on tracks 100 m apart (track resolution) and dis-
played as 2.5 m pixels (pixel resolution), known as Set A-Map A,
and where the data had a track resolution of 50 m and a pixel
resolution 0f10 m, known as Set B-Map B.

The different pixel resolutions of Set A and Set B were created
by binning consecutive acoustic data points at intervals of either
5 or 20 pings, respectively. As the pings were collected every
0.5 m, these bins respectively encompassed 2.5 m (Set A pixel
resolution) and 10 m (Set B pixel resolution) lengths of transect.
The bins were referred to as mean points (MPs) to differentiate
from the use of “data point” for individual acoustic pings. We
then converted these two acoustic datasets into substrate maps
with the following methods.

Cluster analysis

To estimate the range of functional substrate categories in the
surveyed section of the bay, a cluster analysis was performed. The
data were cleaned by removing pings closer than 0.25 m to
reduce wave- and bubble-induced sonic noise. A tidal correction
based on the lower low water low tide (LLWLT) datum was
applied, removing the influence of tidal level on depth over each
survey’s duration. The data were then initially analysed in Bio-
sonics VisualHabitat version 2.0.1, which conducted an unsuper-
vised fuzzy centroid means cluster analysis to group the MPs into
clusters based on substrate characteristics captured at each MP.
This analysis provided a cluster membership likelihood for each
MP, indicating how well each MP fit the description of each clus-
ter. The primary cluster memberships of the MPs were assigned
to the clusters where they best fit. The analysis also reported the
percentage of the total number of MPs that fit into each cluster,
revealing which clusters were rare or potentially constructed of
error characteristics. This information was then processed in
Matlab to calculate the second-bestfitting cluster for each MP,
providing a means by which to compare clusters —if two clusters
shared many of the same MPs between their primary and second-
ary memberships, it is likely that the two clusters represented
the same substrate and were combined into a single cluster. Since
the cluster analysis was designed to deliberately overestimate the
number of functional substrate clusters — as compared with the
substrates identified by Tremblay et al. (2009; Table 1) — to avoid
accidentally conflating potential substrates, this iterative paring
down and combining of the clusters was an important step for clas-
sification accuracy. It was completed in tandem with visual inspec-
tion and interpretation of the echograms, using the metrics of
acoustic strength (dB) and seafloor roughness. Three clusters were
finalized for both Sets A and B.

Substrate categories

The assignment of substrate categories to clusters was based
on four substrate categories developed for lobster habitat in
southwestern Nova Scotia using the Wentworth scale (Tremblay
et al. 2009) (Table 1). These categories and the method of creating
them proved useful for the purposes of this work, but a number

Can. J. Fish. Aquat. Sci. Vol. 78, 2021

Table 1. (A) The grain sizes of the sediments and
(B) the substrate categories used by Tremblay et al.

(2009).

(A) Grain size

Sediment Size range (cm)
Sand <04

Gravel 04 6

Cobble 6 26

Boulder >26

(B) Substrate category

Acronym Sediments

BC Boulder, cobble
BG Boulder, gravel
CG Cobble, gravel
GS Gravel, sand

of changes were made to tailor the system to better suit the
requirements of an acoustic dataset. A series of preliminary anal-
yses indicated that the acoustic method was not sensitive enough
to differentiate between BC (boulder, cobble) and CG (cobble,
gravel) substrates and was unable to consistently and accurately
cluster the MPs appropriately, so BC and CG were combined into
a single category, rock (RK). This was determined through a se-
ries of meta-analyses of substrate cluster analyses, where the pri-
mary and secondary memberships of MPs were compared — the
BC and CG substrate clusters were repeatedly populated with the
same MPs switching between primary and secondary member-
ships, indicating no substantial difference in the characteristics
required for membership in those clusters. Similarly, BG (boulder,
gravel) was indistinguishable from either RK or soft sediment
due to its inherent characteristics and was therefore not discov-
ered through the acoustic data despite being present in the
underwater videos. Additionally, because of its infrequent and
sporadic nature, it was deemed unlikely to be an important cate-
gory and was thus removed. The GS (gravel, sand) category was
split into three categories: gravel (GV), sand (SA), and mud (MD).
This expansion was done in part because adult lobsters display
preferences among those categories and in part because the sep-
arate acoustic signals of GV, SA, and MD are distinct enough to
differentiate — GV was similar to RK but smoother (less vertical
change in the bottom line over horizontal distance), SA was
smoother and hard ( 40 to 25 dB), and MD was smooth and
soft ( 30 to 10 dB). The differences among GV, SA, and MD are
also visible in the underwater video, such that GV was catego-
rized according to the Wentworth scale (Table 1), and SA and MD
were differentiated based on the presence and absence of sedi-
mentary ripples, respectively (Whitlatch 1977). This allowed for
confirmation of the acoustic data substrate categories. Mixed
substrate, where more than one category was present within the
scope of the video, was classified according to the coarsest sub-
strate type present. The final substrate categories used in the fur-
ther analysis were RK, GV, SA, and MD.

Ground-truth video data

These four substrate categories were then used to categorize
the substrate visible on the underwater videos, which were sec-
tioned into 132 individual video segments according to GPS loca-
tion. Each of these segments, which each covered ~2-3 m* of
seafloor, was visually examined and assigned the substrate cate-
gory that best applied. To assign substrate categories to the
acoustic clusters, we randomly selected a subsample of ~70% of
the videos taken on top of the acoustic transects (25 videos of 36;
20% of the total 132 video segments) from the videos taken on top
of the acoustic transects, so that the segments shared GPS

< Published by NRC Research Press
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Table 2. An error matrix representing the nine possible
outcomes of the comparison between the acoustic inter

polation and the video segments.

Video (ground truth)
Acousticinterpolation
(pl'edicﬁon) Vi Vsa Vev
Agk VrkArk  VsaArk  VovArk
A‘SA VRKASA VSAASA VGVASA
Acy VrkAcv  VsaAgv  VevAgy

Note: RK = rock, GV = gravel, SA =sand.

locations with acoustic data. This allowed the comparison of the
substrate-assigned segments to the cluster-assigned MPs, con-
necting clusters with substrate categories through the shared
location data. The mismatch among three acoustic clusters and
four substrate categories was solved by the removal of MD as a
category; only three of the video segments were assigned MD,
which indicates that it is not a common substrate in the study
area and likely would not have shown up in the cluster analysis.

Substrate distribution maps

Indicator kriging was used to predict the distribution of substrate
categories within the surveyed area by quantifying the spatial auto-
correlation of the acoustic data. The isotropic semivariograms were
defined using a spherical model. The kriging interpolation pro-
duced raster map layers that displayed the probability of the grid
cells belonging to each of the three substrate categories, and a sin-
gle layer was created where the cells were assigned the substrate
categories that had the highest probability. This process was com-
pleted using ArcMap version 10.5 in the WSG84 datum and con-
verted Sets A and Binto Maps A and B.

A bathymetric raster of the survey area was created through
the interpolation of the depth data retrieved from the acoustic
data. It was converted into 1 m depth contours, which were
applied to the substrate distribution maps.

Validation and uncertainty

There were two major sources of quantifiable uncertainty in
the above analyses: the interpolated data’s agreement with ground-
truth data (classification certainty) and the interpolation itself
(modelling certainty). Both sources were resolved and examined
to compare the relative accuracy of the two substrate maps.

Error matrices were used to determine the extent of the clas-
sification certainty for the two substrate distribution maps
(adapted from Barrell et al. 2015). The ground-truth data, repre-
sented by the remaining 80% of the underwater video segments
that were not used to assign substrate categories to clusters,
were compared with the interpolated and classified acoustic
data. The details of the agreements and disagreements between the
two sets of data were laid out in an error matrix that tallied the
number of occurrences of each of the nine possible outcomes
(Table 2). These nine outcomes can be consolidated into four
types relative to the substrate under consideration: (i) true
positives (TP), where the ground-truth data (video; V) and the
interpolated datasets (acoustic; A) agree on the presence of a
particular substrate (i.e., VrgAgk for RK); (ii) true negatives (TN),
where the datasets agree on the absence of a particular sub-
strate (i.e., when considering RK, VsaAsa, VGVASA’ VSAAGV! and
VevAgy); (iii) false positives (FP), or errors of commission, where
the interpolation falsely predicts presence (i.e., for RK, VsaAgx and
VevAgk); and (iv) false negatives (FN), or errors of omission, where
the interpolation falsely predicts absence (i.e., for RK, VggAsa and
VriAgy)- These outcomes were used to calculate five statistics for
further investigation (Table 3). These statistics are highly corre-
lated, since they are all derived from the outcomes of the error
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Table 3. Descriptions and equations of the statistics derived from the
error matrices (adapted from Barrell et al. 2015).

Statistic Equation Description
Overall accuracy TP + TN Proportion of all predictions
n that were correct
Sensitivity TP Proportion of correctly
TP + FN prediction presences
Specificity N Proportion of correctly
TN + FP predicted absences
Positive predictive TP Proportion of positive
value (PPV) TP + FP predictions that are TP
Negative predictive TN Proportion of negative
value (NPV) TN + FN predictions that are TN

Note: TP, true positive; TN, true negative; FN, false negative; FP, false
positive.

matrix, but they are useful in determining the relative accuracy
of classification for each substrate category.

The modelling certainty was described visually. In the creation
of the maps, the substrate category for each cell was selected by
choosing the category with the highest probability, which repre-
sented the certainty in the interpolation. The certainty was dis-
played as a map layer with the raster cells coloured to represent
their percent certainty.

Trap data

Using a combination of R version 3.4.1 and ArcMap version 10.5,
the 2089 photos that comprised the lobster trap data were
reduced in number through examination of image metadata.
This included removing photos taken over land, at an oblique
angle (i.e., gimbal pitch < 88°), from an altitude of lower than
85 m, or not facing within 10° of north. The photos were then fur-
ther reduced by eliminating those that were redundant due to
complete overlap. This left 168 photos efficiently covering the
entire area flown by the drone. These photos were then visually
inspected for lobster trap buoys. A corresponding data point was
created and georeferenced at each buoy. If the rope connecting
the buoy to the trap was visible through the water, the point was
placed at the trap end to increase spatial precision. This created a
dataset of lobster presence data that was later used in the presence-
only maximum entropy analysis.

Maximum entropy modelling

Maps A and B were paired with the presence-only lobster trap
data and LLWLT tidally corrected depth rasters and processed
through MaxEnt, a species distribution and environmental niche
modelling software that uses maximum entropy methods (Phillips
et al. 2006). MaxEnt requires georeferenced presence-only species
data (i.e., the lobster trap points) and independent environmental
variable rasters (i.e., substrate maps and depth rasters). MaxEnt
was used to develop four SDMs based on the data. MaxEnt also cre-
ated receiver operating characteristic (ROC) curves, which plot
the true positive rate against the false positive rate to evaluate
the accuracy of the model, and histograms displaying the aver-
age species response to the different substrates.

The SDMs produced via MaxEnt come in four possible output
formats, two of which were selected for the purposes of this
work: “raw” and “cloglog”. The raw output unit is relative occur-
rence rate (ROR), which is the relative likelihood of species pres-
ence in one raster cell as compared with another (Phillips et al.
2006). The unit for the cloglog output is probability of presence
(POP), which is the absolute likelihood of species presence
within a raster cell. These two formats were selected from the
available four formats because the raw output adopts the fewest
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Fig. 4. Substrate distribution maps for (A) Map A and (B) Map B with 1 m depth contours and lobster presence points. RK = rock, GV = gravel,
SA = sand. Map creation information can be found in Materials and methods. [Colour online.]
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assumption in it calculations of the output format , and the
cloglog format produces the mo t u er-friendly and under tand-
able unit.

Results

Trap survey

During he drone survey, 182 lob ter trap buoys were discovered
and GPS-ref renced. Of hose, 86 raps were included within he
extent of Map A, and 90 raps were within the extent of Map B (Fig. 4).

Substrate maps
Depth

The 1m dep h contour show a hallow gradient of increa ing
dep h from we t to east through the bulk of the survey area,
ranging from 4 3 to 292 m deep (Fig. 4) Near Coffin I land, the
gradient is ubstantially steeper than the cen ral por ion, and it
is relatively uniform in compari on with the gradient on the

northern shore These steep gradient areas to the nor h and near
the i land are also where both Map A (100 m track re olution,
25 m pixel re olution) and Map B (50 m rack re olution, 10 m
pixel resolution) show di tribu ion of RK and GV The southern

hore di plays a slightly steeper gradient than the cen ral chan-
nel, which corre pond toRKandGVinMapA

Map A
The ubs rate cla sification resulted in 9148 MPs cla sified a

RK (23.1%), 19 6 0 as SA (496%) and 10 806 as GV ( 73%) for a
grand to al of39 574 MPs (Fig 5A). The majority of the SA MPs are
located in the cen ral channel por ion of the bay, with RK and GV
mo lyto henor hand south RKMP are generally found along
the coastal edges of the surveyed area, notably near Coffin1 land
and the northernmo t edge of the bay The bulk of the GV MPs
are between the RK areas and the SA, particularly southwest of
the i land. The northern half of the urveyed area appears to be
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Fig. 5. Two representations of Map A: (A) acoustic data tracks with MPs classified into substrate categories; (B) interpolated data,
completed via indicator kriging, showing the distribution of substrate category predictions. RK = rock, GV = gravel, SA = sand. Map
r a ion information an be found in Ma erials and me hods. [Colour online.|
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more he erogeneous, wi h he RK, GV, and SA MPs intermixed, Map B

than the cen ral SA-heavy ection.
The interpolation of the MPs produced a map with several small
“i land ” of ub tra e surrounded by a different sub tra e category,
uch as he two areas of RK in the middle of the northea t ection
of GV and the pa ches of SA in the northwe t wath of RK (Fig 5B)
The cen ral channel SA majority shown in Fig 5A appears in the
interpolation, with most of the southern half of the survey area
predicted as SA. The northea tern extreme of the map, which
ex ends to Coffin I land, predicts a trip of RK to the east hat
then gives way to GV to the west and extending to approximately
half of the northern ection. Notably, thi ection of GV predic-
ion is located adjacent to the pas age between Coffin I land and
the mainland and is further from land than the neighbouring
ections where RK was predicted, which are generally near the
hore

Substra e da sification resul ed in 2535 MPs cdlassified as RK
(257%), 5365 a SA (54 5%), and 1951a GV (198%), totalling 9851 MPs
(Fig 6A). The cla sifications are le s homogeneous in compari on
wi h hose of Map A, wi h he nor hern portion of the map con ain-
ing more SA MP and the cen ral channel area of the bay di playing
a le s obvious trend towards SA than is vi ible in Map A. There are
four tracks in the central channel section with segments that are
decidedly classified as RK, in contrast with the tracks surrounding
them, and are likely an artifact from the rough waves encountered
during data collec ion. The sou hernmo t edge of the surveyed
area has a trend towards GV, a does the northea tern edge before
it tran itions to RK MPs near Coffin I land hese two ections are

imilarto the amearea inMap A

Despite the diminished trend towards SA in the central channel

rela ive to Map A, the interpolation still predict SA throughout
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Fig. 6. Two representations of Map B: (A) acoustic data tracks with MPs classified into substrate categories; (B) interpolated data,
completed via indicator kriging, showing the distribution of substrate category predictions. RK = rock, GV = gravel, SA = sand. Map
r a ion information an be found in Ma erials and me hods. [Colour online.|

A

)m );
L 48
XDz, »)
L <e
”’» WM 3 B s,
¢ w Jy»’ ») ))‘)'“m««
(((«S“( « > a?

£

‘@

= @ DY) )
Y =15) »‘: 2575 n)rt;n’mm«g u
0 W
F3) n:.»»nn) . («((«f((dl’(-m) wsccan - "”’ > 9» 0
M)))

2
N Substrate Category
0 05 B =
A [ ——] ) —
s

Table 4. Error matrix for Map A representing the
comparison between the acoustic interpolation
pr di tion andtheund rwat rvideo.

Video (ground tru h)
Acoustic interpolation
(predi tion) RK SA GV
RK 15 17 3
SA 7 3 8
GV 17 15 6

Note: RK = rock, GV = gravel, SA =sand.

the en ire middle ection of the map (Fig. 6B) SA dominates thi
interpolation, encompa ing much of the northern half of the map
in addition to the central channel. The section adjacent to the
passage between Coffin I land and the mainland is predicted a

Table 5. The error statistics for the Map A map as a function of
substrate type.

Overall
Sub trae accuracy Sensitivity Spedificity PPV NPV
RK 0.5165 0.3846 0.6154 04286 0.5714
SA 48 0.0857 0.7321 1667  0.5616
GV .27 0.3529 0.5676 01579  0.7925

Note: RK =rock, GV = gravel, SA = sand, PPV = positive predictive value, NPV
=negative predictive value.

majority SA, wi h some patches of both RKand GV wi hini . The

rip of RK and then GV by Coffin I land is predicted in a imilar
manner to hat in Map A, but the GV tran ition into SA at a
much clo er point to the i land. RK is absent from the ou hern
half of the predictions, occurring only near the shore on the

< Published by NRC Research Press



McKee et al.

713

Fig. 7. Modelling certainty maps derived from the probability remainder of the interpolated data: (A) Map A, (B) Map B. Map creation

information can be found in Materials and methods.
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Table 6. Error ma rix for Map B repre enting he
omparison be ween he a ou ti interpolation
predi ionsand heunderwa er video.

Video (ground tru h)
A ou ti in erpolation
(predi tion) RK SA GV
RK 6 8 0
SA 27 24 10
GV -+ 3 =

Note: RK =rock, GV = gravel, SA =sand.

northern edge and near Coffin I land. The varia ion vi ible in
the noninterpolated da a, par icularly in the cen ral channel
and the southern shore, was largely made uniform by the inter-
polation, and this was likely due to the smoothing factor Since

Table 7. The rror tatis ics for he Map B as a fun ion of sub trate
type.

Overall
Sub trae accuracy Sensitiviy Specifidy PPV NPV
RK 0.5465 0.1622 0.8367 0.4286  0.5694
SA 0.4419 0.6857 0.2745 0.3934 0.5600
GV 0.8023 0.2857 0.9028 0.3636  0.8667

Note: RK =rock, GV = gravel, SA = sand, PPV = positive predictive value, NPV
=negative predictive value.

indicator kriging tend to crea e artificially harp boundarie
between neighbourhoods, we applied a smoothing factor to
reduce he effect of the mathema ical artifacts However, the
moothing al o removed some ofthe varia ion in the da a, creat-
ing unexpectedly homogeneous predictions. While there was
moothing in bo h Map A and Map B, it is more evident in Map B
due to the higher variance in the noninterpolated da a.
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Fig. 8. Receiver operating characteristic (ROC) curves for both Map A and Map B. Curves that exist above the theoretical model at 1:1 (area
under the curve, AUC = 0.5) are considered better than random. Map A has an AUC of 0.846, and Map B has an AUC of 0.860. TPR, true positive

rate; FPR, false positive rate. [Colour online.]
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Validation and uncertainty

Map A

The classification error matrix and statistics for Map A (Tables 4
and 5) showed that RK was incorrectly predicted as GV for 43.59%
of the predictions. This model tended to err on the side of RK or
GV, meaning that it was about three times more likely that SA
points were incorrectly predicted as either RK or GV compared
with RK or GV points incorrectly predicted as SA. For example,
the sensitivity value for SA, which is the number of actual SA
points that were correctly predicted as SA, is only 8.57%, a much
lower value than the sensitivity of RK (38.46%) or GV (35.29%),
indicating that many actual SA points were predicted to be
another category. Seventy-three percent of the classification
errors (FN and FP) for Map A are due to these two trends.

The positive predictive value (PPV), which is the percentage of
positive predictions that were TP, is 42.85% for RK, 16.67% for SA,
and 15.79% for GV, suggesting that this model is best at finding
RK in comparison with the other two substrate categories. The
overall accuracy for each of the substrate categories in this map
is ~50%. For all three categories, the overall accuracy was mostly
the result of TNs than TPs.

The modelling certainty map showed high certainty in the
centre of the bay and along most of the extreme edges of the sur-
vey area near the shore (Fig. 7A), indicating that the substrate is
likely more homogeneous in these locations. The northern third
of the map had a lower certainty, as did a small section to the
south. Lower certainty coincided with higher heterogeneity
(Fig. 5A). The vast majority (34 of 44) of the RK classification
errors uncovered in the matrix are located within the southern
patch of low certainty.

Map B

The error matrix and statistics for Map B (Tables 6 and 7)
showed an opposite trend compared with Map A, where instead
of erring on the side of the more complex substrate, it erred on
the side of SA. Both RK and GV were ~3.3 times more likely to be
incorrectly predicted as SA than the other way around. The sensi-
tivity of SA is 68.57%, compared with RK at 16.21% and GV at
28.57%, meaning that there were a much higher number of SA
points correctly predicted as SA than RK as RK or GV as GV. Simi-
larly, the specificity (or percentage of correctly predicted absen-
ces) is relatively high for RK (83.67%) and GV (90.27%) in
comparison with SA (27.45%); SA is over-predicted for presence

and therefore results in fewer correctly predicted absences. This
over-prediction is visually depicted in the difference in variation
between the noninterpolated data, which shows heterogeneity
across much of the map, and the interpolated data, which dis-
playslarge sections of homogeneous SA (Fig. 6).

The PPV for RK is the same as for Map A at 42.85%. While it is
higher than the SA and GV categories (39.34% and 36.36%, respec-
tively), the difference is not substantial. This indicates that the
ability of this model to distinguish one category over another is
approximately equal among the categories. The overall accura-
cies for the categories were 54.65% for RK, 44.18% for SA, and
80.23% for GV, all of which were mostly the result of TNs.

The modelling certainty map is similar in structure to that of
Map A but with a trend of lower certainty throughout the entire
bay (Fig. 7B). The northern portion of the bay and a section on the
southern shore show particularly low certainty, which coincided
with higher heterogeneity (Fig. 6A).

MaxEnt SDMs

Map A

The areas under the curve (AUC) of the ROC curves are identical
for both the raw and cloglog Map A model output formats (Fig. 8)
at 0.846. This is a measure of how well the model performs and is
compared with the results of a theoretical model based on ran-
domly distributed predictions (AUC = 0.5).

The species response graphs, which plot response (i.e., ROR,
POP) against the variable in question, illustrate a correlation
between depth and substrate category (Fig. 9). The substantial
change in response when depth was excluded as a secondary vari-
able indicates that depth and substrate do not occur independ-
ently of one another. Depth has a larger effect on the overall
species response than does substrate category; the MaxEnt envi-
ronmental variable contribution statistics demonstrate that
depth contributed 85.7% to the model and substrate category
only 14.3%. For both the raw (relative likelihood of species pres-
ence in one raster cell as compared with another) and the cloglog
(absolute probability of species presence in a raster cell) output
models, the response to substrate category (with depth excluded)
is strongest in RK (respectively: 2.42 x 10 %, 0.847), followed by
GV (9.40 x 1075, 0.518), and SA (4.38 x 10>, 0.288). This pattern
coincides with the recognized relationship between adult lob-
sters and their habitat selection, where lobsters prefer shelter-
forming substrates over sand.
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Fig. 9. Species response to substrate categories. Black bars show the marginal response to the substrate variable with the depth variable
included; grey bars show the response to the substrate variable without the depth variable. RK = rock, GV = gravel, SA = sand.
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The raw output hows high ROR along the shoreline , particu-
larly against Coffin Island (Fig. 10A). The bulk of the centre and
the southeast corner contain substantially lower RORs, particu-
larly as the bay opens to the ocean. The ROR along the outhern
edge, near the hore, are generally lower than hose at the other
two clu ter oflob ter trap (ie., the northern and Coffin I land

hores) The we tern ection of the cen ral channel has relatively
high RORs de pi e the absence of lob ter trap , which implie
ano her unmea ured variable may have an effect on lob ter trap
placementin thi area

The cloglog model ou put prediction are similar to tho e of
the raw model with high POP values in the same areas (ie.,
coa tal par icularly along Coffin I land) and low POP values in
the central and ou heastern ections (Fig. 11A) While not
direc ly comparable, the cloglog ou put appears to label more
areaa less uitable than doesthe raw model.

Map B
As for Map A, the AUC for the ROC curves are identical for both
Map B model output format (Fig 8)at 0860 This AUCis not ub-
an ially different from the Map A AUC value of 0.846
The specie re ponse graphs reveal the same confounding rela-
tionship between substrate and depth as in Map A, where the
ub rate category variable is not independent from the dep h
variable (Fig. 9) The dependence is skewed ina imilar manner to
hat of Map A, where the change in response of the ub rate ca e-
gory variable with or without depth is much larger than the
change in re ponse ofthe dep h variable wi h orwi hout the ub-
rate category variable This implie that the dep h variable has
more weight in the model, a conclu ion hati supported by the
environmental variable contribuion s ai tic indicating that
depth con ributed 71 4% to the model and subs rate category
con ributed 28.6%. Again, both the raw and the cloglog output
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Fig. 10. Raw output species distribution models (SDMs), with white rectangles indicating the location of the lobster traps: (A) Map A,
(B) Map B. Note the difference in the colour scales. Map creation information can be found in Materials and methods. [Colour online.]

Relative Occurrence Rate
7.084 | 3180
35E4 | 14E6
1.6E4 6.56-7
72E5  3.0E7
3385 L1487

Il.ua 5.2E-¢

6.926 BN2.38-8

0 0.5

Km

1 [0 lobstertrap

re ponded ronge t to sub trate (dep h excluded) in RK (re pec-
tively: 4 00 x 10~* 0.929), then GV (115 x 10~* 0533) and finally
SA(4.97 x 10>, 0.280).

Much like Map A the raw output for Map B displays high ROR
values near the three coastlines (Fig 10B) Near Coffin I land, the
RORs are almo t uniformly extremely high. The sou hern coast-
line has lower RORs than the equivalent area in the Map A raw
model. Again, the western section has relatively high RORs con-

idering the ab ence of traps

The cloglog output for Map B is visibly less patchy in com-
pari on wi h the cloglog output of Map A, wi h moother ran-

iion in notable areas (e g, Coffin Island; Fig. 11B) The

nor hern hore clu ter of high POPs is higher in his model
han in Map A. There are some barely vi ible patche ofhigher
POP value in the northea tern quadrant of the bay, con-
trasted against the zero value POPs that encompass most of
hat area; the e patches corre pond to GV and RK patche on
the ubs rate map.

Discussion

Reliable habitat maps u efulin marine pa ial planning are de-
pendent on the quality of mapped environmen al variable . For
lob ter, ubs rate is a cri ical determinant of habitat, o we con-

ider variation in ubstra e designation ari ing from acous ic
data and its subsequent analysis. Most previous marine studies of
habi at mapping and SDM do not con ider the fine pa ial cales
and re olu ion we have examined, namely due to a lack of suita-
ble data (Brown et al. 2011; Lecours etal 2015) Similarly, few stud-
ies include even ba ic assessmen s of error and uncer ainty in
their SDMs, let alone more in-depth analyses (Robinson et al

017) In this study, we explored the relationship between habitat
heterogeneity and the patialre olu ion of the inputda a, explic-
itly te ted the effec s of pa ial re olu ion on SDM output, and
inve igated the uncer ainty of the SDM , all of which are impor-
tant steps in the further development of the use of SB-AGDS and
other remote ensingtechnologies for MSP.
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Fig. 11. Cloglog output SDMs, with white rectangles indicating the location of the lobster traps: (A) Map A, (B) Map B. Map creation

information can be found in Materials and methods. [Colour online.|
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While the overall re ult of the maps crea ed from Map A and
Map B are similar, both demons ra ing higher lob ter response
along Coffin I land, the northern hore, and to ales er extent the

ou hern shore, there are di tinct difference between the maps
requiring examination to develop an appropriate interpretation.
These con idera ion are impor ant to future application of
acou tic habi at mapping for use in SDM

Resolution and track eparation
The selection of the track resolutions and pixel re olutions for
use in the tudy was surpri ingly difficult. Despi e the fact that
patial re olu ion can have rong implications for the outcome
of the map layers (Brown et al 2011), there i no tandard for
choice of values in studies of this type, due in large part to site-
specific differences in habitat heterogeneity. There is a large vari-
ety of rackresolutions found in the literature for urveys of simi-
lar scales, depths and nearshore locations as in our work (Freitas

et al 2011; Ander on et al. 2002; Brown et al. 2005; Foster-Smi h
et al. 2004) Given that the footprint diam ter of the acous ic
pings collected in Liverpool are very mall (0.45-5.4 m depending
on dep h)in compari on wi hmo t of the literature examples of
track resolu ion (70 m - 2 km), the interpolation b tween the
pings on epara e track would be spar ely informed if hose lit-
erature values were adopted. The relatively small size of Liver-
pool Bay allowed the choice of ighter track spacing (Brown et al
005). However, effort is inversely proportional to track resolu-
tion, and rack resolutions were chosen to balance hese two con-
flic ing components while examining the consequences of
patialre olu ion on SDM output
The literature provide di cu sion of the pixel re olu ion limi-
tations of optical data (Schweizer et al 005), but SB AGDS stud-
ies tend to avoid the matter (Lecours et al. 2015) The elec ion of
overly coarse pixel resolu ion can lead to what is commonly
known a the “mixed pixel problem”, where the value of a pixel
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is the result of a combination of signals from different reflective
groups (Schweizer et al. 2005; Jones and Sirault 2014). However,
too small pixel resolution allows for “noise”, or spurious detail in
the form of microscale substrate patchiness to be collected and
recorded as valid, habitat-level variation.

The effects of the different spatial resolutions resulted in the
differences in substrate distribution between Maps A and B in
the northeastern quadrant. The low modelling accuracy in the
area indicates that interpolation was not effective, suggesting
high heterogeneity in the substrate. This heterogeneity can lead
to differences in binned averages if the bin sizes vary, reflected in
subsequent pixel construction. As indicated above, Map A errs on
the side of RK and GV, which has the risk of overestimating lob-
ster habitat. However, Map B results err on the side of SA and
could be considered to underestimate lobster habitat. These
trends are most easily observed in the interpolated substrate
maps (Figs. 5 and 6). This discrepancy highlights the necessity of
considering spatial scale with respect to habitat heterogeneity
when evaluating both the input layers and the results of SDMs,
with particular implications for decisions made within the con-
text of MSP.

Substrate categories

Despite the confounding nature of depth on substrate cate-
gory, the switch in response rankings between RKand GV in reac-
tion to the exclusion of the depth variable does not substantially
alter the final map interpretation because RK and GV were likely
confounded themselves. Descriptive resolution is a term first
coined by Green et al. (1996) to encompass the varying breadth
and detail of substrate category descriptions revealed by remote
sensors. The descriptive resolution of the SB-AGDS in this study is
quite coarse, revealing the substrate categories RK, GV, and SA.
This coarseness has created broad substrate categories, and given
that RK and GV can be relatively similar in physical structure,
especially when contrasted with SA, there is a high probability
that (i) they share some characteristic acoustic features and
(ii) they were often confounded during the cluster analysis,
before the interpolation stage. This is in essence a more abstract
version of the mixed pixel problem explained above. If the SB-
AGDS were able to define narrower substrate categories, the
assignment of substrates into those categories would likely be
more precise, have less potential overlap, and display a clearer
relationship between substrate and lobster response.

The effect of depth changed the magnitude and ranking of the
substrate categories (Fig. 9). In all four model outputs (raw and
cloglog for Map A and Map B), lobsters were most strongly associ-
ated with GV and second-most with RK when depth was included,
but those positions reversed when depth was removed from the
analysis; and lobsters associated with SA the least, though with a
change in magnitude following the removal of depth. Areas cate-
gorized as GV span a wide range of depths, from ~8 to 27 m, and
most of the lobster presence points found in GV areas are located
in the shallower sections, particularly along the shore of Coffin
Island. Therefore, the relationship between the species response
and GV when depth is included is expected; shallow GV has a
high lobster presence. When depth is removed as a variable,
there are very few presence points on the large patches of deeper
GV, and species response averages out to much lower values. The
lack of lobster presence points in deep GV areas is likely due to
the increased distance from RK areas, which is the more pre-
ferred substrate. Because there is less variance in depth in the
areas categorized as RK (roughly 4 to 14 m), the removal of depth
has a lesser but opposite effect on RK. Despite this explanation of
the interdependency between depth and substrate, removing
depth from consideration entirely and using only substrate to
predict species occurrence would be inappropriate. Even when
confounded with other variables, depth has a substantial effect
on habitat suitability because the best lobster habitats in coastal
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areas tend to be found in shallower water (Lawton and Lavalli
1995).

Differences in descriptive resolution were the rationale behind
altering the substrate categories compared with Tremblay et al.
(2009; Table 1). The video system in their study was able to detect
the difference between boulders and cobbles, but our acoustic
system was not. Tremblay et al. (2009) found fewer lobsters on
cobble substrate than among boulders, meaning that the combi-
nation of the two categories in this study could have skewed pre-
dictions depending on the actual ratio of cobble to boulder in the
RK areas. Similarly, Tremblay et al. (2009) found very few lobsters
on GV substrate, and in our study the relatively high response to
GV may be a result of the proximity of GV to RK (Figs. 10 and 11;
particularly near Coffin Island). However, the landscape context
of the lobster habitats was not explored in either study and may
have had an undetermined effect on the outcome (Mazerolle and
Villard 1999).

Depth

Bathymetry is one of the most readily available and useful data
layers for marine geospatial studies, especially when obtained at
high resolution through remote sensing. Depth was the main
contributing variable in both Map A (85.7%) and Map B (71.4%),
meaning that depth had a stronger influence on the responses of
both models than the substrate categories. Depth was included
in the modelling process because it is a standard oceanographic
variable and is temporally stable at similar scales to substrate dis-
tribution. However, the entire depth range of the surveyed area
is well within the habitable range for the American lobster
(Holthuis 1991). If depth is a major causative variable, the western
section of the surveyed area, which is both shallow and sandy
(Fig. 4), would have likely had more lobster traps. This is an indi-
cation that the depth variable is not the main contributing factor
to species response. Instead, the pattern that is detected by the
model through the depth variable appears to be more closely
related to distance from shore (Fig. 10 and 11; the southern shore
has high probability of presence despite relatively deep water).
Distance from shore is highly correlated with substrate type, as
substrates are generally coarse near shore and grow finer with
distance, which indicates that the high suitability on the shore-
linesis likely to be the result of substrate and not depth.

Even a cursory examination of lobster presence overlaid on
substrate maps shows a clear preference for coarser substrate.
Nonetheless, we are left with an overall accuracy of 44.19%
80.23%, which may be close to random on the lower end. This
occurs due to the interaction of depth and substrate. We suggest
that some of the interaction of our variables is a consequence of
the small area over which the SDM was applied. Small areas
inherently contain a reduced range of the values of environmen-
tal variables. While we investigated the effect of sampling scale
on substrate maps, the overall study area is fixed and resolution
is high in both cases. Lobsters are not fished over the entirety of
the study site but undoubtedly occur throughout the study area
even if at low density. The relatively shallow bathymetry of the
entire bay is well within lobster depth range, so a depth prefer-
ence in itself is less likely. Instead, greater depths incorporate
coarser substrate and thus more apparent habitat. In applying
SDM to marine species, it is important to consider the context of
range of variables. While the benthic substrate ranges from MD
to RK, the full spectrum of this variable, depth does not have
enough variation to be important as a predictor. This statement
highlights the notion that marine environmental variables
should be evaluated critically in the context of information value
when considering inclusion in models. Regardless of indicator
value, bathymetry is usually incorporated into SDM, since it is
the most widely available spatial variable.
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Lobster traps

Collecting precisely geolocated lobster presence data in Nova
Scotia was challenging. A scientific trapping license is difficult to
obtain, as are GPS records for traps deployed by fishing boats. No
records of geolocated lobsters were found for Liverpool Bay at a
suitable scale; government records of landings are binned in grid
cells of ~18.5 km x 18.5 km (Coffen-Smout et al. 2013). Accompa-
nying a lobster fisher on their boat as they retrieved traps would
have required considerable financial compensation for their
time. Additionally, lobster fishers can be extremely protective of
their trap placements, as the knowledge of prime trapping spots
is valuable (Acheson 2003). However, given the level of detailed
knowledge on lobster behaviour and preferred habitat that most
lobster fishers have (Acheson 2003), it is reasonable to assume
that the presence of a trap buoy is associated with lobster pres-
ence. Therefore, the strength of the local fishers’ knowledge of
adult lobster movement was considered reliable enough that the
traps they deployed could be used as presence indicators in the
model.

Since we used lobster traps as an indicator of presence, our
SDM does not cover all phases of the lobster life cycle and instead
targets catchable adults. For example, fishers may deliberately
avoid areas or substrate types known to be frequently populated
by berried females (Campbell 1990; Chang et al. 2010). For a mi-
gratory benthic species, one would not expect a single substrate
type to characterize the entire life cycle. Our species distribution
model is thus somewhat finely tuned to the fishery. However, our
focus was on MSP aspects of lobsters with respect to fish farming,
and a central component of that context is the fishery. Our addi-
tional work on lobster-substrate relations involves the occur-
rence of juveniles on soft substrates (McKee 2018). The sampling
requirements for surveying juvenile lobsters is a major research
effort (Dinning and Rochette 2019), and it would not be routine
in an MSP context. This difference within the lobster life cycle
highlights the utility of SDM applied to MSP. A model adapted to
juvenile H. americanus for a given location may eventually have
broader applicability, which would avoid the impractical task of
quantifying juvenile abundance for each location.

One of the major assumptions in using MaxEnt is that the mod-
elled area has been thoroughly sampled (Elith et al. 2011). This
assumption was met, since the fishers have sampled the mod-
elled area over an extended temporal scale, using decades of
experimentation, trial and error, and shared information. Some
change in the location and borders of the known lobster habitat
is to be expected over so long a period, but MaxEnt’s boundary
modelling is already limited in its precision.

Conclusions

To avoid user-user conflict between the lobster fishery and the
salmon aquaculture industry in Liverpool, new salmon pens
could be placed near the centre of the surveyed area, particularly
in the green sections of the SDMs. This area is not particularly
suitable for lobsters and would satisfy the basic requirements of
the net pens, which include shelter from the open ocean and at
least 15 m depth. However, other aspects of coastal activity would
need to be considered, as it is possible that that area has high traf-
fic or experiences other environmental concerns that would neg-
atively affect its suitability to aquaculture, and lobster trap
locations do not capture every aspect of lobster habitat. Simi-
larly, avoiding co-location does not address every concern regard-
ing their interaction with aquaculture. Our primary goal with
this study was to avoid siting of fish farms in lobster fishing areas
so that the removal of fishable bottom is minimized. At present,
there is little evidence that fish farm effluents are generally
affecting lobster fisheries (Grant et al. 2016, 2019).

More generally, this study has shown that the use of SB-AGDS is
effective in creating fine-scale lobster habitat suitability maps,
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despite a number of caveats for their use and interpretation. The
indistinct boundaries between substrate patches and the relative
nature of the raw suitability distribution values suggest that the
maps would be best used as qualitative models for use in MSP,
with scales of high and low suitability. The difficulties in obtain-
ing lobster presence data remain but could be mitigated with the
formation of strong relationships between local fishers and
researchers. Because of their fine scale, local relevance, and species-
specific design, the maps created using the above described method
are suitable for use as the data layers required in a marine spatial
planning exercise designed to manage the user-user conflict
between the local lobster fishery and the net-pen aquaculture
industry. We emphasize that this study was conducted at such a
local scale because the planning decisions are made at the same
scale; if this scale of work is repeated in different geographic
areas, then larger-scale patterns may emerge that could prove
informative in future planning work. Appropriate data layers
are often lacking in MSP, and the use of primary data defining
resource use is an important input to planning efforts. We
therefore propose that this method could be used in similar
future bay-scale marine spatial planning ventures.

This study also supports the argument that spatial resolution is
a critical aspect of benthic habitat mapping studies and that the
effects of scale and resolution should be explicitly discussed and
analysed along with consideration of uncertainty, especially
given the relative lack of focus on these issues in the literature
(Robinson et al. 2017). The substantial differences in the two final
maps is a direct result of experimenting with spatial resolution
and serves as an important reminder to interpret spatial models
and map layers with a discerning eye.
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